Bound states of the square well

One of the simplest potentials to study the properties of is the so-called square
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Figure 4.1: The square well potential

We define three areas, from left to right I, IT and III. In areas I and III we have the
Schrodinger equation

B2 42 (2.2)
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whereas in area Il we have the equation

L (D) = (B4 Vo) 23)

Solution to a few ODE's. In this class we shall quite often encounter the ordinary
differential equations
d=2 o, (2.4)
gir_zf[r) =—a’f(z)
which has as solution

flz)= Aj cos(azr) + Bisinf[az) = o —I—Dle_im, (2-5)



and
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which has as solution
g(x) = Aj cosh(ar) + Bysinh(ar) = Cpe™ + Dye™ ", (2.7)

Let us first look at /> 0. In that case the equation in regions 1 and III can be
written as
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F‘iﬁ{fj = —E‘EHI) = —k*y(z),

where

k:\/a (2.9)
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The solution to this equation is a sum of sines and cosines of kX, which cannot
be normalised: Write trrr(z)= Acrsliz) 4 Bsin(kx)

(A, B, complex) and calculate the part of the norm originating in region III,

f |A|? cos® kx + |B|%sin® kx + 2R{AB*) sin(kz) cos(kz Ydz
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Jim N(AP/2+ |B/2) = oo.
We also find that the energy cannot be less than — VO , since we cannot construct
a solution for that value of the energy.

We thus restrict ourselves to — VO <E<QO.

We write
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The solutions in the areas I and III are of the form (i=1,3)

Y(z) = A" 4 Bie™*". (2.12)

In region II we have the oscillatory solution

1¥(z) = Ao cos(kz) + Basin(kz). (2.13)

Now we have to impose the conditions on the wave functions we have discussed

before, continuity of ¥/ and its derivatives. Actually we also have to impose
normalizability, which means that A] = B3 =0 (exponentially growing
functions can not be normalized).

As we shall see we only have solutions at certain energies.

Continuity implies that
A e + B et = 4 cos(ka)— B, sin(ka)
A" + B e" = A4, cos(kar) + B, sin(ka)
k Ae " —k B e =k A cos(ka)+x B, sin(ka)
k Aje™* —k B.e** = -k A, cos(ka)+ K B, sin(ka)

(2.14)

Tactical approach: We wish to find a relation between & and K. The trick is to

first find an equation that only contains A2 and B2 . To this end we take the ratio

of the first and third and second and fourth equation:

k= k[Azsin(ka) + Bz cos(ka)]

A cos(ka) — Bysin(ka)

(2.15)

— k[Azsin(ka) — Bz cos(ka)]
k A cos(ka) + By sin(ka)

We can combine these two equations to a single one by equating the right-hand
sides.
After deleting the common factor K, and multiplying with the denominators we

find



[Az :0s(ka) + Bz sin(ka)][Azsin(ka) — Bz cos(ka)] = (2.16)

[Azsin(ka) + Bz cos(ka)][Az cos(ka) — Bz sin(ka)],

which simplifies to

A4,B,=0

We thus have two families of solutions, those characterised by A2 = () and those

that have B2 =0.

Some consequences

There are a few good reasons why the dependence in the solution is on ka, ku

and K'Oa : These are all dimensionless numbers, and mathematical relations can

never depend on parameters that have a dimension! For the case of the even

solutions, the ones with B2 =(, we find that the number of bound states is

determined by how many times we can fit 27 into K,a. Since K, is

proportional to (the square root) of V', we find that increasing VO increases the

number bound states, and the same happens when we increase the width a.

Rewriting K 04 slightly we find that the governing parameter is

2
\ 72 Vo2

so that a factor of two change in @ 1is the same as a factor four change in VO‘

If we put the two sets of solutions on top of one another we see that after every
even solution we get an odd solution, and vice versa.
There is always at least one solution (the lowest even one), but the first odd

solution only occurs when K A=T.



Lessons from the square well

The computer demonstration showed the following features:

l.

If we drop the requirement of normalisability, we have a solution to the
TISE at every energy. Only at a few discrete values of the energy do we

have normalisable states.

. The energy of the lowest state is always higher than the depth of the well

(uncertainty principle).

. Effect of depth and width of well. Making the well deeper gives more eigen

functions, and decreases the extent of the tail in the classically forbidden
region.

Wave functions are oscillatory in classically allowed, exponentially
decaying in classically forbidden region.

The lowest state has no zeroes; the second one has one, etc. Normally we
say that the 71 -th state has 7 —1 "nodes".

Eigen states (normalisable solutions) for different eigen values (energies) are

orthogonal.

A physical system (approximately) described
by a square well

After all this tedious algebra, let us look at a possible physical realization of such a

system. In order to do that, we shall have to talk a little bit about semi-conductors.

A semiconductor is a quantum system where the so-called valence electrons

completely fill a valence band, and are separated by a gap from a set of free states

in a conduction band. These can both be thought of a continuous set of quantum

states. The energy difference between the valence and conduction bands is

different for different semi-conductors. This can be used in so-called quantum-well

structures, where we sandwich a thin layer of, e.g., GaAs between very thick layers

of GaAlAs.
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Figure 4.4: A schematic representation of a quantum well

Since the gap energy is a lot smaller for GaAs than for GaAlAs, we get the effect
of a small square well (in both valence and conduction bands). The fact that we can
have a few occupied additional levels in the valence, and a few empty levels in the
conduction band can be measured.

The best way to do this, is to shine light on these systems, and see for which

frequency we can create a transition (just like in atoms).



Glossary

1. square well potential — moTeHIMaT TPAMOYTOJIBHOM SIMBI,
2. Schrodinger equation — ypasHenue Hlpéaunrepa,

3. whereas - Torna kax

4. quite often — oueHb YaCTO, TOBOJIHHO YACTO

5. encounter — cTaJIKHUBaTHCS, HATAIKUBATHCS

6. the ordinary differential equations — oO6brunbIe (001IKE) MU PepeHIInaTbHbIC
ypaBHEHUS

7. solution — pemienue (ypaBHEHUs)

8. restrict — orpaHUYMBATD

9. to impose — Hajarath CBs3b,

10. derivative — mpousBoaHas

11. continuity — HEPEepbIBHOCTH

12. normalized — HOpManM30BaHHBIN

13. exponential — SKCTTOHEHITUATBHBII

14. trick — npuem (T€XHUYECKHUI), OPUTUHAIIBHOE PeIIeHUE
15. denominator — 3HaMeHaTeNb

16. simplify - ynpomars

17. drop the requirement — HakJIabIBaTh TPEOOBAHKE

18. depth — rmy6una

19. uncertainty principle - npuHIMTT HEONTPEAETEHHOCTH
20. even solution — yeTHOE peleHue

21. odd solution — HeueTHOE pelieHue

22. vice versa — Ha000pOT, MPOTUBOIOJIOKHO

23. consequence — pe3yabTat (4ero-iuoo), (1mo)ciecTBue
24. tedious algebra — nHynHas (cky4dHas) anredpa

25. semi-conductor — MOAyNnpoOBOHUK

26. valence band — BaneHTHas 30Ha

277. gap — 1enb, MHTEPBall, pa3pbiB

28. band 30Ha, JIeHTa, MoJI0OCa, PEMEHb

29. think of — npencraBisaTh (cede)

30. layer — cmoit, mpocoiika

31. shine light — ocBemienue ceeTom



